MEMORIAL DESCRITIVO DA INSTALAÇÃO FOTOVOLTAICA DE 6.48KWP

Anexos:

- diagrama unifilar da instalação;
- esquema planimétrico.

DATA

01/01/2025

TÉCNICO RESPONSÁVEL

Paolo Costa SOLAR Plus

SUMÁRIO

DADOS GERAIS DO SISTEMA	3
LOCAL DE INSTALAÇÃO	3
DIMENSIONAMENTO	3
DESCRIÇÃO DO SISTEMA	4
EMISSÕES	4
IRRADIAÇÃO SOLAR	4
EXPOSIÇÕES	5
GERADOR	7
INVERSOR SOLAR	8
DIMENSIONAMENTO	9
CABEAMENTO ELÉTRICO	10
PROTEÇÕES ELÉTRICAS	14
QUADRO ELÉTRICO	15
VERIFICAÇÕES	16
LAYOUT DO GERADOR	17
DIAGRAMA DE BLOCOS	20
DIAGRAMA ELÉTRICO	21
REFERÊNCIAS NORMATIVAS	22
CONSIDERAÇÕES FINAIS	23

DADOS GERAIS DO SISTEMA

Este projeto diz respeito à construção de uma sistema de produção de energia através da conversão fotovoltaica, com uma potência nominal igual a 6 kW e potência de pico igual a 6,48 kWp.

CLIENTE			
Cliente: Antonio Dos Santos			
Endereço:	Avenida do Antão 226 88025-150 Florianópolis		
CPF / CNPJ:			
Telefone:	48 2102-7704		
Fax:			
E-mail:	INFO@HIPERENERGY.COM.BR		

LOCAL DE INSTALAÇÃO

O sistema tem as seguintes características: .

DADOS DA LOCALIZAÇÃO			
Localidade:	Florianópolis 88025-150 Avenida do Antão 226		
Latitude:	027°35'00"S		
Longitude:	048°32'18"W		
Altitude:	22 m		
Fonte dados climáticos:	ATLAS BRAS. 2017		
Albedo:	25 %		

DIMENSIONAMENTO

A quantidade de energia produzida é calculada com base nos dados solarimétricos, conforme a fonte ATLAS BRAS. 2017, e utilizando os métodos de cálculo descritos nas normas.

As instalações atenderão às seguintes condições (a serem executadas para cada "gerador solar", entendida como um conjunto de módulos fotovoltaicos com o mesmo ângulo e a mesma orientação):

Na fase inicial do sistema fotovoltaico, a relação entre a energia ou a potência produzida em corrente alternada (determinada em função da radiação solar incidente sobre o plano de um dos módulos, da potência nominal do sistema e a temperatura de funcionamento dos módulos) é, pelo menos, maior do que 0,78, no caso de utilização de conversores de potência até 20 kW, e 0,8 no caso de utilização de inversores de maior potência, em relação às condições de medição e métodos de cálculo descritos no Guia EN 60904-2.

Não são admitidos conjuntos de módulos em paralelos não perfeitamente idênticos uns aos outros para exposição e / ou da marca, e / ou o modelo e / ou o número de módulos utilizados; cada módulo será equipado com díodos de by-pass.

DESCRIÇÃO DO SISTEMA

O sistema fotovoltaico é composto de nº 1 geradores fotovoltaicos compostos de nº 12 módulos fotovoltaicos e nº 1 inversores.

A potência de pico é de 6,48 kWp para uma produção de 7.709,5 kWh por ano, distribuídos em uma área de 30,72 m².

Modalidade de conexão à rede de alimentação Baixa Tensão em Bifásico (2F + N) com tensão fornecimento 380 V.

EMISSÕES

O sistema reduz a emissão de poluentes na atmosfera de acordo com seguinte tabela abaixo (valores anuais):

Produção Termo Elétrica Equivalente		
Dióxido de enxofre (SO ₂):	1,20 kg	
Óxidos de Nitrogênio (NO _x):	1,52 kg	
Poeiras:	0,05 kg	
Dióxido de carbono (CO ₂):	0,90 t	

Equivalente de energia geotérmica		
Sulfeto de Hidrogênio (H ₂ S) (fluido geotérmico):	0,00 kg	
Dióxido de carbono (CO ₂):	0,00 t	
Tonelada equivalente de Petróleo (TEP):	1,44 TOE	

IRRADIAÇÃO SOLAR

A avaliação do recurso solar disponível foi realizada de acordo com a fonte ATLAS BRAS. 2017, tendo como referência o local com os dados históricos e de radiação solar nas imediações de Florianópolis.

TABELA DE IRRADIAÇÃO SOLAR NA HORIZONTAL

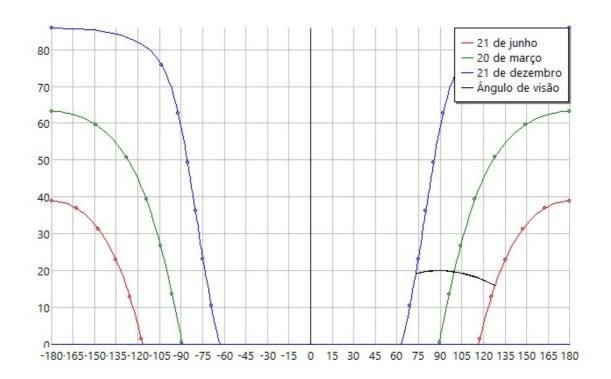
Mês	Total diário [MJ/m²]	Total mensal [MJ/m²]
Janeiro	21,12	654,72
Fevereiro	19,63	569,27
Março	16,97	526,07
Abril	13,58	407,4
Maio	10,99	340,69
Junho	9,27	278,1
Julho	9,72	301,32
Agosto	12,27	380,37
Setembro	12,82	384,6
Outubro	15,71	487,01
Novembro	19,93	597,9
Dezembro	21,64	670,84

TABELA DE PRODUÇÃO DE ENERGIA

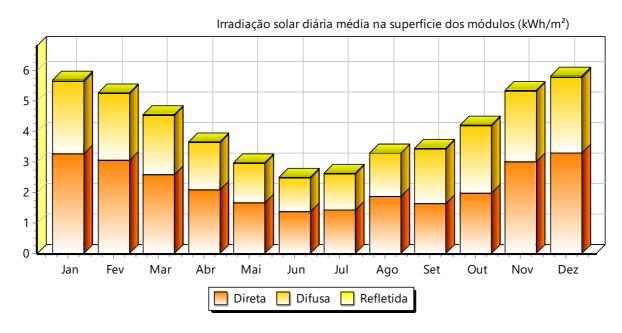
Mês	Total diário [kWh]	Total mensal [kWh]
Janeiro	30,293	939,069
Fevereiro	28,085	814,472
Março	24,209	750,48
Abril	18,163	544,891
Maio	13,221	409,837
Junho	10,961	328,845
Julho	11,748	364,189
Agosto	16,174	501,383
Setembro	18,067	542,013
Outubro	22,45	695,945
Novembro	28,564	856,931
Dezembro	31,016	961,492

EXPOSIÇÕES

O sistema fotovoltaico é composto por 1 gerador distribuído em 1 exposições, conforme tabela abaixo:


Descrição	Tipo de instalação	Orient	Inclin	Sombr	Área global
Telhado Leste	Ângulo fixo	-90,5°	20°	0 %	82,5 m ²

Telhado Leste


Telhado Leste será exposto com uma orientação de -90,50° (azimute) em relação ao sul, e terá uma inclinação horizontal de 20,00°.

A produção de energia da exposição Telhado Leste é condicionada por alguns fatores que determinam uma redução de radiação solar de sombreamento para a valor de 0 %.

GRÁFICO DE SOMBREAMENTO

GRÁFICO DE IRRADIAÇÃO SOLAR

TABELA DE IRRADIAÇÃO SOLAR

Mês	Irradiação direta [kWh/m²]	Irradiação difusa [kWh/m²]	Irradiação refletida [kWh/m²]	Total das diárias [kWh/m²]	Total mensal [kWh/m²]
Janeiro	3,249	2,368	0,044	5,661	175,49
Fevereiro	3,034	2,182	0,041	5,257	152,444
Março	2,583	1,926	0,035	4,544	140,871
Abril	2,062	1,552	0,028	3,642	109,248

Maio	1,655	1,28	0,023	2,958	91,691
Junho	1,353	1,126	0,019	2,499	74,963
Julho	1,408	1,188	0,02	2,616	81,11
Agosto	1,852	1,417	0,025	3,295	102,14
Setembro	1,62	1,783	0,027	3,43	102,899
Outubro	1,978	2,193	0,033	4,204	130,326
Novembro	2,99	2,306	0,042	5,338	160,141
Dezembro	3,275	2,481	0,045	5,801	179,839

ESTRUTURAS DE APOIO

Os módulos serão montados em suportes de aço galvanizado aderentes a cobertura, todos terão a mesma exposição. Os sistemas de fixação da estrutura deverão resistir a rajadas de vento, com velocidade de até $120\ km\ /\ h.$

GERADOR

O gerador é composto de 12 módulos fotovoltaicos de Silício monocristalino com uma vida útil estimada de mais de 25 anos e degradação da produção devido ao envelhecimento de 0.8% ao ano.

CARACTERÍSTICAS DO GERADOR FOTOVOLTAICO		
Número de módulos:	12	
Número de inversores:	1	
Potência nominal:	6 kW	
Potência de pico:	6,48 kWp	
Performance ratio:	79,3 %	

CARACTERÍST	ICAS TÉCNICAS DOS MÓDULOS
Fabricante:	LONGI SOLAR
Modelo:	Hi-MO5 LR5-72HPH-540M
Tecnologia de const.:	Silício monocristalino
Características elétricas	
Potência máxima:	540 Wp
Rendimento:	21,1 %
Tensão nominal:	41,7 V
Tensão em aberto:	49,5 V
Corrente nominal:	13 A
Corr. de curto-circuito:	13,9 A
Taxa de eficiência bifacial:	0 %
Dimensões	
Dimensões:	1133 mm x 2256 mm
Peso:	27,2 kg

Os valores de tensão variam conforme a temperatura de funcionamento (mínima, máxima e de regime) e estão dentro dos valores aceitáveis de funcionamento do inversor.

A linha elétrica proveniente dos módulos fotovoltaicos é posta a terra mediante descarregadores de sobretensão com indicação ótica de fora de serviço.

INVERSOR SOLAR

O sistema de conversão é composto por um conjunto de conversores estáticos (inversores). O conversor CC/CA utiliza um sistema idôneo de transferência de potência a rede de distribuição, em conformidade aos requisitos técnicos e normas de segurança. Os valores de tensão e corrente do dispositivo de entrada são compatíveis com o sistema fotovoltaico, enquanto os valores de saída são compatíveis com os valores da rede ao qual está conectado ao sistema. As principais características do grupo conversor são:

- □ Inversor de comutação forçada com PWM (Pulse-width modulation), sem clock e/ou tensão de referência ou de corrente, semelhante a um sistema não idôneo a suportar a tensão e frequência de intervalo normal. Este sistema está em conformidade com as normas da ABNT e com o sistema de rastreamento de potência máxima MPPT
- ☐ Entrada do gerador CC gerenciado com pólos não ligados ao terra.
- □ Conforme as normas gerais de limitação de Emissões EMF e RF: Conformidade IEC 110-1, IEC 110-6, IEC 110-8.
- Proteção de desligamento da rede quando o sistema estiver fora da faixa de tensão e frequência da rede e com falha de sobrecorrente, conforme os requisitos da IEC 11-20 e normas da distribuidora de energia elétrica local. Reset automático das proteções de início automático.
- □ Em conformidade com a ABNT.
- ☐ Grau de proteção adequado a localização nas proximidades do campo fotovoltaico (IP65).
- Declaração de conformidade do fabricante de acordo com normas técnica aplicáveis, com referência aos ensaios realizados por institutos certificadores.
- □ Tensão de entrada adequada para o intervalo de tensão de saída do gerador fotovoltaico.
- □ Máxima eficiência >= 90% a 70% da potência nominal.

A unidade de conversão consiste no uso de 1 inversores.

DADOS TÉCNICOS DO INVERSOR		
Fabricante:	GROWATT NEW ENERGY	
Modelo:	MIN TL-XE MIN 6000TL-XE (60Hz)	
Número de rastreadores:	2	
Entrada para rastreador:	1	
Características elétricas		
Potência nominal:	6 kW	
Potência máxima:	6,1 kW	
Potência máxima por rastreador:	3 kW	
Tensão nominal:	360 V	
Tensão máxima:	550 V	
Tensão mínima por rastreador:	80 V	
Tensão máxima por rastreador:	550 V	
Tensão máxima de saída:	230 Vac	
Corrente nominal:	32 A	
Corrente máxima:	32 A	

Corrente máxima por rastreador:	16 A
Rendimento:	0,98

Inversor 1	MPPT 1	MPPT 2
Módulos em série:	6	6
Conjunto de módulos em paralelos:	1	1
Exposições:	Telhado Leste	Telhado Leste
Tensão MPPT (STC):	249,9 V	249,9 V
Número de módulos:	6	6

DIMENSIONAMENTO

Potência de pico do gerador:

 $P = P \text{ m\'odulos} * N^{\circ} \text{ m\'odulos} = 540 \text{ Wp} * 12 = 6,48 \text{ kWp}$

O cálculo da energia total produzida pelo sistema nas condições normais de STC (radiação de 1000 W/m², temperatura de 25°C), é calculado como:

Exposição	N° módulos	Radiação solar [kWh/m²]	Energia [kWh]
Telhado Leste	12	1.501,16	9.727,54

E = En * (1-Perd) = 7709,5 kWh

Perd = Perda de potência obtida:

Perda por sombreamento totais:	4,0 %
Perda por aumento de temperatura:	5,6 %
Perdas por descasamento:	5,0 %
Perdas de corrente continua:	1,5 %
Outras perdas:	5,0 %
Perdas na conversão:	1,6 %
Perdas totais:	20,7 %

PERDAS POR SOMBREAMENTO DE OBSTÁCULOS

Mês	Sem obstáculos [kWh]	Produção efetiva [kWh]	Perdas [kWh]
Janeiro	939,1	939,1	0,0 %
Fevereiro	815,7	814,5	-0,2 %
Março	753,8	750,5	-0,4 %
Abril	584,6	544,9	-6,8 %
Maio	490,6	409,8	-16,5 %
Junho	401,1	328,8	-18,0 %
Julho	434,0	364,2	-16,1 %
Agosto	546,6	501,4	-8,3 %

Setembro	550,6	542,0	-1,6 %
Outubro	697,4	695,9	-0,2 %
Novembro	856,9	856,9	0,0 %
Dezembro	962,3	961,5	-0,1 %
Ano	8032,9	7709,5	-4,0 %

CABEAMENTO ELÉTRICO

O cabeamento elétrico será feito por meio de cabos condutores isolados, conforme a descrição abaixo:

□ Seção do condutor de cobre calculado de acordo com a norma IEC / NBR

Os cabos também estarão de acordo com as normas IEC, com código e cores conforme a norma IEC / NBR.

Para não comprometer a segurança dos trabalhadores durante a instalação, verificação ou manutenção, os condutores seguirão a tabela de cores conforme abaixo:

□ Cabos de proteção: Amarelo-Verde (Obrigatório)
□ Cabos de neutro: Azul claro (Obrigatório)
□ Cabos de fase: Cinza/Marrom/Preto

□ Cabos de circuito c.c.: Com indicação especifica de (+) para positivo e (-)

para negativo.

Como pudemos notar a especificação exposta acima, a seção do condutor do sistema fotovoltaico é superdimensionado, com referimento a corrente e as distâncias limitadas.

Com estas seções, a queda de potencial está contida dentro 2% do valor medido a partir de qualquer módulo para o grupo de conversão.

A fiação: Série fotovoltaica - Q. Campo

Descrição	Valor
Identificação:	
Comprimento total:	16,94 m
Comprimento de dimensionam.:	9,6 m
Circuitos nas proximidades:	1
Temperatura ambiente:	30°
Tabela:	ABNT NBR 16612
Instalação:	C1 - Cabo instalado ao ar livre, condutor a 90°C, temp. ambiente de 20°C
Instalações:	Cabos encostados um ao outro, na horizontal. Instalação protegida do sol
Tipo de cabo:	Unipolar
Material:	Cobre
Designação:	FG10M1 0.6/1 kV
Tipo de isolação:	EPR
Formação	2x(1x6)
N° condutores positivos/fase:	1
Seção positivo / fase:	6 mm²
N° condutores negativo/neutro:	1
Seção negativo/neutro:	6 mm²

N° condutores PE:	
Seção PE:	
Tensão nominal:	249,9 V
Corrente de funcionamento:	13,0 A
Corrente de curto-circ.to módulos:	13,9 A
Queda de tensão:	0,3 %

A fiação: **Q. Campo - Q. Inversor**

Descrição	Valor
Identificação:	
Comprimento total:	3,11 m
Comprimento de dimensionam.:	1,55 m
Circuitos nas proximidades:	1
Temperatura ambiente:	30°
Tabela:	ABNT NBR 5410 (PVC/EPR)
Instalação:	3(B1) - Condutores isolados ou cabos unipolares em eletroduto aparente de seção circular sobre parede
Instalações:	Em feixe: ao ar livre ou sobre superfície; embutidos; em conduto fechado
Tipo de cabo:	Unipolar
Material:	Cobre
Designação:	FG10M1 0.6/1 kV
Tipo de isolação:	EPR
Formação	2x(1x6)+1G6
N° condutores positivos/fase:	1
Seção positivo / fase:	6 mm ²
N° condutores negativo/neutro:	1
Seção negativo/neutro:	6 mm ²
N° condutores PE:	1
Seção PE:	6 mm²
Tensão nominal:	249,9 V
Corrente de funcionamento:	13,0 A
Corrente de curto-circ.to módulos:	13,9 A
Queda de tensão:	0,1 %

A fiação: **Q. Inversor - Q. Proteção AC**

Descrição	Valor
Identificação:	
Comprimento total:	1,77 m
Comprimento de dimensionam.:	1,77 m
Circuitos nas proximidades:	1
Temperatura ambiente:	30°
Tabela:	ABNT NBR 5410 (PVC/EPR)
Instalação:	3(B1) - Condutores isolados ou cabos unipolares em eletroduto aparente

	de seção circular sobre parede
Instalações:	Em feixe: ao ar livre ou sobre superfície; embutidos; em conduto fechado
Tipo de cabo:	Unipolar
Material:	Cobre
Designação:	FM9 450/750 V
Tipo de isolação:	PVC
Formação	2x(1x6)+1G6
N° condutores positivos/fase:	1
Seção positivo / fase:	6 mm²
N° condutores negativo/neutro:	1
Seção negativo/neutro:	6 mm²
N° condutores PE:	1
Seção PE:	6 mm²
Tensão nominal:	219 V
Corrente de funcionamento:	29,1 A
Queda de tensão:	0,2 %

A fiação: **Q. Proteção AC - Q. Medição**

Descrição	Valor			
Identificação:				
Comprimento total:	6,65 m			
Comprimento de dimensionam.:	6,65 m			
Circuitos nas proximidades:	1			
Temperatura ambiente:	30°			
Tabela:	ABNT NBR 5410 (PVC/EPR)			
Instalação:	3(B1) - Condutores isolados ou cabos unipolares em eletroduto aparente de seção circular sobre parede			
Instalações:	Em feixe: ao ar livre ou sobre superfície; embutidos; em conduto fechado			
Tipo de cabo:	Unipolar			
Material:	Cobre			
Designação:	FM9 450/750 V			
Tipo de isolação:	PVC			
Formação	3x(1x6)+1G6			
N° condutores positivos/fase:	1			
Seção positivo / fase:	6 mm²			
N° condutores negativo/neutro:	1			
Seção negativo/neutro:	6 mm²			
N° condutores PE:	1			
Seção PE:	6 mm²			
Tensão nominal:	379 V			
Corrente de funcionamento:	29,1 A			
Queda de tensão:	0,3 %			

A fiação: **Q. Medição - Rede**

Descrição	Valor			
Identificação:				
Comprimento total:	0 m			
Comprimento de dimensionam.:	0 m			
Circuitos nas proximidades:	1			
Temperatura ambiente:	30°			
Tabela:	ABNT NBR 5410 (PVC/EPR)			
Instalação:	3(B1) - Condutores isolados ou cabos unipolares em eletroduto aparente de seção circular sobre parede			
Instalações:	Em feixe: ao ar livre ou sobre superfície; embutidos; em conduto fechado			
Tipo de cabo:	Unipolar			
Material:	Cobre			
Designação:	NBR-R2X 0,6/1 kV			
Tipo de isolação:	XLPE			
Formação	3x(1x10)+1G10			
N° condutores positivos/fase:	1			
Seção positivo / fase:	10 mm²			
N° condutores negativo/neutro:	1			
Seção negativo/neutro:	10 mm²			
N° condutores PE:	1			
Seção PE:	10 mm²			
Tensão nominal:	380 V			
Corrente de funcionamento:	29,0 A			
Queda de tensão:	0,0 %			

Tabela cabos							
Identific.	Descrição	Form.	Des.	Código	Origem	Destin	Copr.
w00	Cabo da série fotovoltaica A 1-A Q.1	2x(1x6)	FG10M1 0.6/1 kV		da Série fotovoltai ca A 1		9,6 m
W01	Cabo da série fotovoltaica A 2-A Q.1	2x(1x6)	FG10M1 0.6/1 kV		da Série fotovoltai ca A 2		7,33 m
W02	Cabo A Q.1 - inversores A I.1	2x(1x6)+1 G6	FG10M1 0.6/1 kV		A Q.1	inversore s A I.1	1,55 m
W03	Cabo A Q.1 - inversores A I.1	2x(1x6)+1 G6	FG10M1 0.6/1 kV		A Q.1	inversore s A I.1	1,55 m
W04	Cabo inversores A I.1 - q.p.	2x(1x6)+1 G6	FM9 450/750 V		inversore s A I.1	q.p.	1,77 m
W05	Cabo q.p q.m.	3x(1x6)+1 G6	FM9 450/750 V		q.p.	q.m.	6,65 m
W06	Q. Medição - Rede	3x(1x10)+1 G10	NBR-R2X 0,6/1 kV		Q. Medição	Rede	0 m

Tabela resumo cabos					
Código	Construtor	Form.	Des.	Descrição	Copr.

Série fotovoltaica - Q. Campo	2x(1x6)	FG10M1 0.6/1 kV	33,88 m
Q. Campo - Q. Inversor	2x(1x6)+1 G6	FG10M1 0.6/1 kV	9,33 m
Q. Inversor - Q. Proteção AC	2x(1x6)+1 G6	FM9 450/750 V	5,31 m
Q. Proteção AC - Q. Medição	3x(1x6)+1 G6	FM9 450/750 V	26,6 m
Q. Medição - Rede	3x(1x10)+ 1G10	NBR-R2X 0,6/1 kV	0 m

PROTEÇÕES ELÉTRICAS

Usuário	Tipologia	Descrição	In
Quadro string box / junção (DC)			
Série fotovoltaica - Q. Campo	Fusível		25 A
Q. Campo - Q. Inversor	Int. manobra seccionador		25 A
Quadro proteção inversor / Medição (AC)			
Q. Inversor - Q. Proteção AC	Termomagnético		32 A
Q. Medição - Rede	Termomagnético		50 A
Dispositivo de proteção contra surtos			
DPS no Q. Campo			
DPS na conexão com a rede			

QUADRO ELÉTRICO

Quadro de campo lado corrente contínua

Será prevista a instalação de um quadro de CC em cada conversor para conexões em paralelo dos módulos, medições e controle dos dados de entrada e saída em cada gerador fotovoltaico.

Quadro de paralelo lado corrente alternada

Será prevista a instalação de um quadro de paralelo em alternada localizado depois dos conversores estáticos, para realização da medição e controle dos dados de saída do inversor. Dentro será adicionado o sistema de interface com a rede e o medidor da sociedade distribuidora CELESC.

ISOLAÇÃO GALVÂNICA E ATERRAMENTO

É previsto o isolamento galvânico entre a corrente continua do sistema fotovoltaico e a rede. Soluções técnicas diversas podem ser utilizadas e são aceitáveis desde que respeitem as normas vigentes e de boas práticas.

O sistema fotovoltaico será supervisionado por um sistema IT, sem o polo aterrado.

Os conjunto dos módulos serão apresentados pelo número de módulos fotovoltaicos individualmente desligáveis; o sistema possui diodos de bloqueio e proteção contra surtos.

Por razões de segurança, se alguma parte da rede não suportar uma maior intensidade de corrente, esses sistemas devem ser protegidos individualmente.

A estrutura de suporte será aterrada.

SISTEMA DE MONITORAMENTO E CONTROLE (SMC)

O sistema de controlo e de monitoramento, permite, por meio de um computador e um software dedicado, de comunicar em cada instante com o sistema de modo a verificar a funcionalidade dos inversores instalados com a possibilidade de visualizar as indicações técnicas (tensão, corrente, a potência, etc.) para cada inversor.

Também pode ser lido no histórico de eventos do inversor.

VERIFICAÇÕES

O instalador irá verificar e certificar os pontos seguintes:

- □ Produção de energia fotovoltaica gerada sob diferentes condições de operação;
- □ Continuidade elétrica entre os módulos e as ligações;
- Aterramento;
- □ Isolamento de circuitos elétricos;
- O Gerador atenda às seguintes condições:

Limites de tensão

Tensão mínima Vn a 70,00 °C (213,8 V) maior do que Vmpp mínimo (80,0V)

Tensão máxima Vn a -10,00 °C (278,0 V) inferior a Vmpp máx. (550,0 V)

Tensão a vazio Vo a -10,00 °C (325,1 V) inferior a tensão máx. do inversor (550,0 V)

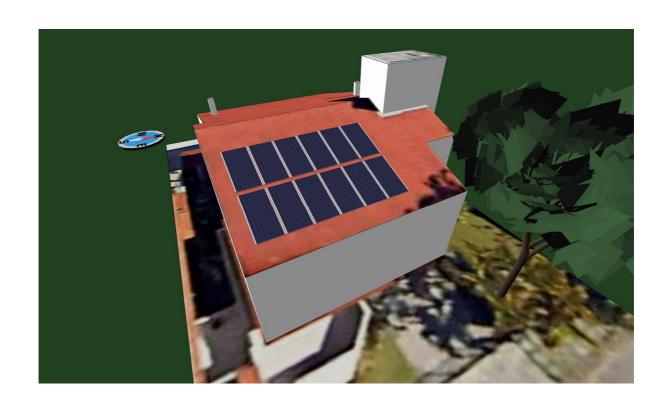
Tensão a vazio Vo a -10,00 °C (325,1 V) inferior a tensão máxima de isolamento (1500,0 V)

Limites de corrente

Corrente máxima de entrada relacionada a Isc (13,9 A) inferior a corrente máxima do inversor (16,0 A)

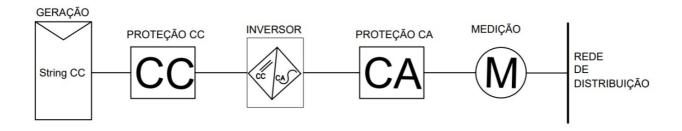
Limites de potência

Dimensionamento de potência (106,4%) compreendido entre 70,0% e 130,0% [MPPT 1]


LAYOUT DO GERADOR

Posicionamento dos módulos		
Descrição	A. Gerador	
Potência nominal	6 kW	
Módulos	LONGI SOLAR - LR5-72HPH-540M	
Número de módulos	12	
Inversor	GROWATT NEW ENERGY - MIN 6000TL-XE (60Hz)	
Dist. entre estruturas	0,2 m	
Dist. entre módulos	0,03 m	

Série	Inv.	MPPT	Ent.	Exposição
A 1	1	1	1	Telhado Leste
A 2	1	2	1	Telhado Leste



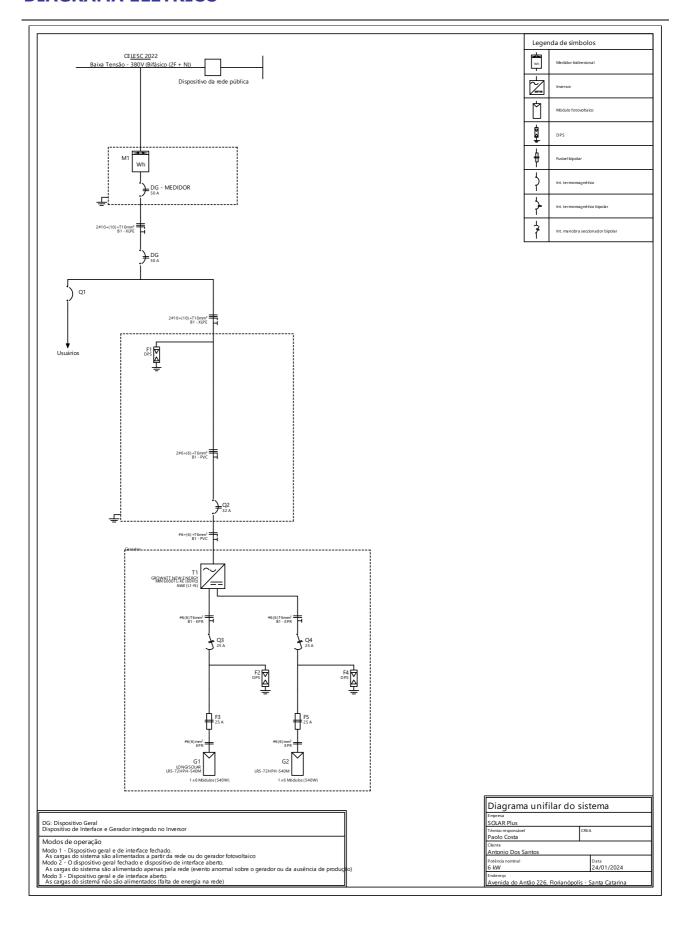


DIAGRAMA DE BLOCOS

DIAGRAMA ELÉTRICO

REFERÊNCIAS NORMATIVAS

- ABNT NBR 16690:2019, Instalações elétricas de arranjos fotovoltaicos Requisitos de projeto
- ABNT NBR 5410:2004, Instalações elétricas de baixa tensão
- ABNT NBR 16274, Sistemas fotovoltaicos conectados à rede Requisitos mínimos para documentação, ensaios de comissionamento, inspeção e avaliação de desempenho
- ABNT NBR 16612, Cabos de potência para sistemas fotovoltaicos, não halogenados, isolados, com cobertura, para tensão de até 1,8 kV C.C. entre condutores Requisitos de desempenho
- ABNT NBR IEC 60529, Graus de proteção providos por invólucros (Códigos IP)
- ABNT NBR IEC 60947-1, Dispositivos de manobra e controle de baixa tensão Parte 1: Regras gerais
- ABNT NBR IEC 60947-2, Dispositivos de manobra e controle de baixa tensão Parte 2: Disjuntores
- ABNT NBR IEC 60947-3, Dispositivos de manobra e controle de baixa tensão Parte 3: Interruptores, seccionadores, interruptores-seccionadores e unidades combinadas com fusíveis
- ABNT NBR NM 280, Condutores de cabos isolados (IEC 60228, MOD)
- ABNT NBR NM 60898, Disjuntores para proteção de sobrecorrentes para instalações domésticas e similares (IEC 60898:1995, MOD)
- IEC 60269-6, Low-voltage fuses Part 6: Supplementary requirements for fuse-links for the protection of solar photovoltaic energy systems
- IEC 60445, Basic and safety principles for man-machine interface, marking and identification Identification of equipment terminals, conductor terminations and conductors
- IEC 60898-2, Electrical accessories Circuit-breakers for overcurrent protection for household and similar installations Part 2: Circuit-breakers for A.C. and D.C. operation
- IEC 60904-3, Photovoltaic devices Part 3: Measurement principles for terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data
- IEC 61215-1, Terrestrial photovoltaic (PV) modules Design qualification and type approval Part 1: Test requirements
- IEC 61215-1-1, Terrestrial photovoltaic (PV) modules Design qualification and type approval Part 1-1: Special requirements for testing of crystalline silicon photovoltaic (PV) modules
- IEC 61215-1-2, Terrestrial photovoltaic (PV) modules Design qualification and type approval Part 1-2: Special requirements for testing of thin-film Cadmium Telluride (CdTe) based photovoltaic (PV) modules
- IEC 61215-1-3, Terrestrial photovoltaic (PV) modules Design qualification and type approval Part 1-3: Special requirements for testing of thin-film amorphous silicon based photovoltaic (PV) modules

CONSIDERAÇÕES FINAIS

Será emitido e divulgado pelo instalador, os seguintes documentos:

- Manual de uso e manutenção, incluindo a programação recomendada de manutenção;
- □ Projeto executivo "como construído", acompanhado com folhas de material instalado;
- □ Declaração dos controles efetuados e dos seus resultados;
- □ Declaração de conformidade;
- □ Certificado emitido por um laboratório acreditado INMETRO e quanto à conformidade com EN 61215 para os módulos de silício cristalino e IEC 61646 para módulos de filme fino;
- Certificado emitido por um laboratório acreditado quanto à conformidade do inversor DC / AC com as normas vigentes e, se o dispositivo de interface é usado dentro da própria unidade;
- □ Declarações de garantia relativas aos equipamentos instalados;
- ☐ Garantia de todo o sistema e o desempenho.

A empresa de instalação, além de realizar com o que está indicado no projeto, irá realizar todos os trabalhos em conformidade com a normas.